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ABSTRACT

This report contains two papers to be presented at the Eleventh
Annual Conference of the Cognitive Science Society. The first
describes a simulation of chunking in a connectionist network,
The network applies context-sensitive rewrite rules to strings
of symbols as they flow through its input buffer. Chunking is
implemented as a form of self-supervised learning using back-
propagation. Over time, the network improves its efficiency by
replacing simple rule sequences with more complex chunks

l2hrhe second paper describes the first implementation of Lakoff's

new theory of cognitive phonology. His approach is based on a
multilevel representation of utterances to which all rules apply
in parallel. Cognitive phonology is free of the rule ordering
constraints that make classical generative theories computation-
ally awkward. The connectionist implementation utilizes a novel
"many maps" architecture that may explain certain constraints

on phonological rules not adequately accounted for by more
abstract models.
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Chunking in a Connectionist Network

David S. Touretzky

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Incremental performance improvement with accumulated experience has been measured in human beings
for a wide variety of cognitive, perceptual, and motor tasks (Newell, 1987). "Chunking" produces similar
performance improvements in symbolic computer programs, such as the SOAR production system (Laird
it al., 1987). Chunking takes place in SOAR by observing the working memory trace associated with
a sequence of rule firings, and abstracting from this trace a chunk which in the future will produce the
same results in a single step.

This paper presents a rule-following connectionist system that also improves its efficiency through chunk-
ing. It differs from symbolic production systems in several respects. Although connectonist networks
may exhibit rule-following behavior, they do not necessarily contain explicit symbolic rules (Rumelhart
& McClelland, 1986; Smolensky, 1988; Pinker & Prince, 1988). The system reported here learns its
initial set of behaviors by back propagation from examples. Chunks are then created by a mechanism that
observes input/output behavior as the network runs. The chunker is not told'which features of the input
were responsible for a particular output. In SOAR terminology, it has no access to a working memory
trace.

The task the connectionist network is performing is string manipulation based on an abstract version of
generative phonology. It was while working on a connectionist approach to phonology that I hypothesized
chunking might play a role in the linguistic development of humans. Some speculations on the interaction
between a chunker and the Language Acquisition Device appear at the end of this paper.

A Rule-Following Connectionist Network

Figure 1 shows part of a connectionist network that manipulates strings according to context-sensitive
rewrite rules. The rewrite rules are an abstract version of classical generative phonology rules, and are
shown here using classical notation. Rule RI below says "change C to E in environments where it
precedes a D." Similarly, rule R2 says "change A to B when it precedes an E."

Ri: C -- > E / D
R2 : A -- > B / E

Application of RI to the string ABCD yields ABED. Figure 1 shows how this is accomplished. The
input buffer, rule module, andI charge buffer form a tree-layer feed-for,,,:.rd network. Symch, are
sequentially shifted into the input buffer. Rule units read the buffer state and generate an output pattern in
the change buffer describing the changes that are to be made to the input. (Each input buffer segment has
a corresponding change buffer segment.) Three types of changes are possible: mutation of input tokens,
deletion of input tokens, and insertion of new tokens. A String Editing Network, not shown, reads the
input and change buffer patterns and generates an updated input pattern in which the specified changes
have been made. The design of the String Editing Network is explaned in (Touretzky, 1989).
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Figure 1: Part of a connectionist network for applying rewrite rodes to strings.

The symbols from which strings are composed are binary feature vectors. The experiment reported here
uses a representation with five "phonetic" features organized as one group of two features and one of
three features. (In real phonology there are many more features; they encode the place and manner of
articulation of sounds.) Features within a group are mutually exclusive. There are a total of six legal
symbols, labeled A through F. The change buffer patterns use an eleven-element code for each segment:
one for signaling deletion, five for describing a mutation, and five for specifying an insertion. Symbols
are always inserted to the right of the corresponding input buffer segment.

Change buffer patterns are tri-state: 0 means "no change," +1 means "turn the corresponding bit in the
input buffer on," and - 1 means "turn the corresponding bit off." For deletion and insertion operations,
- I is treated like zero. The use of tri-state patterns causes the change buffer units to adopt the "no
change" case as the default in the absence of input. Tri-state outputs are obtained using the symmetric
sigmoid activation function ar(x) = 2/[1 + exp(-x)] - 1.

The initial rules are installed by applying backpropagation to a training set of input pattern/change pattern
pairs. The rule module serves as the hidden layer during learning. Once the initial rule set has been
acquired, there is no supervised learning in the model. To acquire chunks, sequences of typical inputs are
run through the input buffer. As it applies its rewrite rules, the model formulates chunks when two rules
fire in succession, and trains itself using backprop to predict a chunked action in the appropriate context.
Chunking may therefore be regarded as "self-supervised" learning, since the model is serving as its own
teacher. The chunking mechanism is explained further after the next section.

Position-Independent Rules

Rules are always learned in "standard position," where the rightmost element of the rule's environment is

- 2 -
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the rightmost element of the input buffer. However, downstream feeding relationships may require rules
to apply in other positions. Consider what happens when the stnng ACD is shifted into the input buffer
one segment at a time. The network does nothing with the initial substrings A and AC. After shifting
in the D, ACD is convened zo AED by rule RI. R2 should then apply to produce BED, but the AE
environment for R2 is not aligned with the right edge of the input buffer, i: is one segment downstream.

To allow rules to apply independent of position, we make several downstream copies of the'primary rule
module and constrain the link weights in each copy to be equal to the corresponding primary module
weights, as shown in Figure 2. This way rules need only be learned in standard position, but they can
apply anywhere they are needed. The reason for using a change description as the output representation
should now be clear: the outputs of all the rule modules can be superimposed by addition at the change
buffer units. If each rule module were to directly map the input string to an updated string, the outputs
of multiple rule modules could not be combined.

Buffer

Figure 2: Link-equality constraints cause secondary rule modules to replicate the behavior of the primary
module at various positions downstream.

The Chunking Mechanism

Figure 3 shows how chunking is accomplished. The model has two change buffers. The a connections,
which control the Current Change Buffer, are created by back propagation learning on an initial training
set supplied by the teacher. The 3 connections control the Chunked Change Buffer, which the network
uses to teach itself new chunks.

Chunking occurs continuously as the network processes patterns flowing through its input buffer. Each
time a symbol is shifted into the input buffer and a forward pass is performed, the a connections produce
a Current Change Buffer pattern. If the pattern is all zeros, meaning no a rule fired, the 3 connections are
taught to produce the same result. If the pattern is non-zero, meaning some a rule did fire, the chunker
makes a note of the change buffer pattern. and the string editing network makes the requested change
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Figure 3: Chunking of rules RI and R2 by training 0 connections to produce the composition of the two
rules' change buffer patterns.

and updates the input buffer. After a second forward pass, if no more a rules fire, there is no sequence
to be chunked. In this case the 3 connections are taught to imitate the change pattern produced by the
single a rule. If an c rule does fire on the second forward pass, a chunk can be composed from the
remembered change buffer pattern of the first rule plus the change buffer pattern of the second rule. The
3 connections ae then taught to output this composite change pattern in the context that caused the first
c rule to fire.

This training regimen ensures that the 3 rules will be an essential superset of the a rules. The only a
rules not duplicated on the 3 side will be those that never fire in isolation, but only to feed another rule
or as a result of a feeding rule. These non-essential ck rules will be replaced by chunks. More commonly,
chunked and unchunked versions of rules coexist on the 3 side.

A number of fine points in the training of the model need to be explained. In a chunking network the
connections to rule and change buffer units should remain plastic. Plasticity can be lost if units are
allowed to get too far out on the tails of the sigmoid, where the derivative goes to zero. Several steps
are taken to prevent loss of plasticity. In standard back propagation the error signal of an output unit
is defined to be the difference between the actual and desired outputs multiplied by the derivative of
the output function (Rumelhan et al., 1986). In the chunking network the derivative term is omitted for
output units.

In addition, weights must not be allowed to grow too large during training, as this can also hinder future
learning. To keep the weights small and the rule units from getting too far out on the tails of the sigrnoid,
the model uses output training targets of +0.5 and -0.5 rather than +1 and - 1. When updating the input
buffer, any change buffer value greater than +0.3 is treated as +1, and any value less than -0.3 is treated
as -1.

Although change buffer units use a symmetric sigmoid, rule units use the standard sigmoid. I conjecture

-4-



TOURETZKY

that rules may be learned more easily this way. Rule units are feature detectors, so when a feature is not
present the unit's output should be zero. This is easily achieved with the standard sigmoid by supplying
a substantial negative bias that can be counteracted only by an appropriate pattern of input features. With
tri-state units it is not possible hold the output steady at zero over the entire set of inputs that aren't
supposed to trigger a rule.

Finally, it should be noted that in order to learn the environments in which new chunks apply, rule units
must modify not only their 3 output connections, but also their input connections. But this alters the
rule unit's response to subsequent inputs, so it may interfere with the continued production of correct
patterns in the Current Change Buffer. To prevent the model from leading itself astray, it is programmed
to continually rehearse its a behaviors as it trains the 3 connections. Rehearsal is another instance of
self-supervised learning. Each pattern the a units generate in the Current Change Buffer is "idealized"
by treating all values greater than +0.3 as +0.5, all values less than -0.3 as -0.5, and all other values
as 0. The difference between the ctual a outputs and the idealized outputs generates an error signal that
helps to readjust the input weights on each presentation, countering the disruptive effect training the 3
units has on the input weight pattern. The a and 3 sides of the model are thereby forced to compromise
on an input weight pattern that allows each side to do its job.

Complex Rule Interactions

Composing a chunk from two mutation rules is easy: one simply inclusive-or's the change buffer patterns
(using tri-state logic), giving the second rule priority in the case of a +1/ - I conflict. Composing chunks
from other types of rules is slightly more complex. If the first rule inserts or deletes a segment, some
portion of the second rule's change buffer pattern will need to be shifted to take this change into account
before inclusive-oring the two together. If the second rule mutates a segment that was inserted by the first,
the second rule's mutation pattern must be combined (with priority) with the first rule's insert pattern, not
its r- 'ation pattern. If the second rule deletes a segment that was inserted by the first rule, the first rule's
insertion must be suppressed in the composed chunk. This can be accomplished by setting the insertion
bits to zero.

In the simulation, chunked change buffer patterns were composed by a Lisp version of the above algorithm.
However, it would be easy to construct a connectionist network to do the same task. The input would be
the current and previous change buffer patterns; the output would be the composed change.

A limitation of this particular rewrite-rule architecture is that only one symbol can be inserted between
each pair of symbols in the input buffer. Therefore one cannot chunk two rules if they both insert
something at the same input position. In practice this situation does not seem to come up in segmental
phonology, although there are multi-segment insertions at the morphological level.

Experimental Results

The initial chunker simulation used an input buffer of length six, and three rule modules, each of which
looked at three adjacent input segments. The primary rule module was taught rules RI and R2 by
backpropagation on a small training set. (The training set consisted of some environments in which
the rules should apply, plus some additional environments in which no rule should fire.) The following
example shows the results of this training. R2 and then RI applies, independently, in standard position,
as the string AEFCD is shifted through the input buffer. Underscores denote null segments (all zeros.)
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(demo ' (a e f c d))

Shift A into input buffer: A

Shift E into input buffer: - - A E

Change due to rule firing: - - - - B E (rule R2)

Shift F into input buffer: - B E F

Shift C into input buffer: B E F C

Shift D into input buffer: _ B E F C D
Change due to rule firing: _ B E F E D (rule Rl)

We next consider an example of downstream feeding of R2 by RI. which never occurred in the training

data. Note that after the last symbol is shifted in, the input buffer changes twice. This is the condition
allowing a chunk to be composed.

(demo ' (a c d))

Shift A into input buffer: A

Shift C into input buffer: A C
Shift D into input buffer: - A C D

Change due to rule firing: - - - A E D (rule RI)
Change due to rule firing: . . . B E D (rudleR2)

Running the network on sequences such as ACD allows it to learn chunks in self-supervised mode, by

observing its own behavior. The chunk for turning ACD into BED consists of RI plus a shifted version

of R2, since R2 is applying one segment downstream. The rule units must learn to pay attention to the

third segment of the buffer, whereas for RI and R2 in isolation only the first two segments are important.

The result of chunking is shown below for the string ACDCD. (To actually use the learned chunks we

replace the a weights with the learned 3 weights.) The ACD to BED portion of the example demonstrates

the existence of the RI-R2 chunk; the CD to ED portion that follows demonstrates the preservation of

RI on the 3 side as an independent rule. Other inputs verified that R2 was also preserved.

(demo '(a c d c d))

Shift A into input buffer: A
Shift C into input buffer: - - A C
Shift D into input buffer: _ A C D

Change due to rule firing: . . . BE D (chunk R1-R2)

Shift C into input buffer: B E D C
Shift D into input buffer: _ B E D C 0

Change due to rule firing: _ B E D E 0 (rule RI)

Additional experiments confirm that the network can chunk insertion and deletion rules as well as muta-

tions. It can also combine a learned chunk with another rule to form a bigger chunk.

As long as the model's behavior is governed solely by the a connections, it will not be able to apply the

chunks it has learned. An initial, brute-force solution to this problem is to simply copy the 3 weights to

the a connections whenever the 3 training error is low enough. But such a drastic, global weight change
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is admittedly unnatural. We are currently exploring more fluid ways of exchanging knowledge between
the a and 3 sides. One scheme we have tried is to maintain running confidence levels for each side.
and with each new input syrrMol, stochastically choose either the a or 3 change.buffer pattern based on
relative confidence values. Initially the 3 confidence is low. When the a side has successfully trained
the 3 side, the network begins to execute a mix of a and 3 actions, including some learned chunks. As
the 3 side in turn tries to teach new chunks to the a side, the a confidence level drops and the 3 rules
take over until the new a chunks have been learned.

Interesting Chunking Phenomena

A number of interesting questions are raised by this work. One is the order in which larger chunks should
be formed. Consider the feeding rule chain R1-R2-R3-R4. If the model builds at most one chunk before
shifting a new symbol into its buffer, the chain will be chunked in the order (((RI R2) R3) R4). This
approach is compatible with the power law of practice cited by Newell. If the model builds a chunk
whenever any pair of unchunked rules fire in sequence, the order of chunk creation will be ((RI R2) (R3
R4)). It is not yet known which order is more compatible with the way the learning algorithm creates
rule representations.

A second question is what representation th model will develop for rules that participate in multiple
feeding chains. Consider a case where, for one class of inputs there is a chmk RI-R2-R3, and for
another class a chunk RI-R4-R5. Since RI is shared by both chunks and may also apply ,n isolation, the
representations of the two chunks and the original rule should be similar, and will probably snare units.

A related issue is the formation of variable-length chunks from self-feeding rules, such as this deletion
rule: R6: E -- > 0 / F

R6 applies three times in succession to the string BEEEF to derive BE After chunking, BF should be
obtained in a single rule firing. If the chunker is exposed to sequences of form {E} F of varying length,
it should build a collection of related chunks. The degree and nature of the overlap in representations of
these chunks is worth investigating.

Finally there is the issue of variables appearing in rules. Variables serve either to narrow the domain of
application of a rule (when the same variable appears twice on the left hand side), or to copy a value
from one place to another (when the variable appears once on the left and at least once on the right hand
side.) In phonology it is not too expensive to expand a variable-containing rule into a set of variable-free
rules, because variables can take on only a few values. In more general symbol processing tasks this may
not be feasible. It may be possible to teach a backpropagation network to implement rules with variables
by encoding the value in the hidden layer activation pattern. Such a scheme would probably require a
more complex hidden layer than in the present model.

Chunking and Language

The segmental phonology of any human language can be expressed by sequences of simple rewrite rules
on strings. These rules are highly constrained, so that, for example, reversing the segments of a word
is not possible in human phonology (Pinker & Prince, 1988). Another constraint is that there' is no
metathesis (switching) of non-adjacent segments. The regularity and degree of constraint of phonological
processes is striking, and cries out for scientific explanation. The hypothesis motivating the work reported
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here is that the Language Acquisition Device may only be able to hypothesize very simple rules. The
rules can interact to produce lengthy deritatons, and they are extensively chunked during development
to arrive at adult linguistic performance. But chunking is the only source of complex rules; they cannot
be created de novo by the LAD.

Why have rules at all in a connectionist theory? Rules separate policy 1what Chomsky calls linguistic
.switch settings") from mechanism (the fundamental ability to do insertions, deletions, and mutations.) If
a mechanism such as the String Editing Network is universal and genetically determined, then the LAD's
job is tremendously easier: it can concentrate on learning just the policies of the speaker's language.

This paper makes no assumption that policies require explicit symbolic representitions in speakers' heads.
Rather, it shows that chunking can occur even when there is no working memory trace available and
new rules cannot be constructed symbolically. The connectionist chunker acquires its rules incremen-
tally, through self-supervised backpropagation and rehearsal of prior knowledge. Further experiments are
planned to analyze the representations the chunker develops.
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Towards a Connectionist Phonology:
The "Many Maps" Approach to Sequence Manipulation

David S. Touretzky

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract: Lakoff's new theory of cognitive phonology appears to be free of the rule ordering
constraints that make generative rules computationally awkward. It uses a multilevel repre-
sentation for utterances, to which multiple rules may apply in parallel. This paper presents the
first implementation of Lakoff's proposal. based on a novel "many maps" architecture. The
architecture may also explain certain constraints on phonological rules that are not adequately
accounted for by more abstract models.

Linguists established long ago the value of describing phonological processes in terms of formal symbolic
rules, but they have steadfastly refrained from speculating about the nature of representations in speakers'
heads. Rumelhart and McClelland (1986) argue against the neuropsychological reality of rules. Pinker
and Prince (1988) offer persuasive counterarguments. The current reaction against rule-based accounts of
low-level cognitive phenomena, phonology in particular, is no doubt strengthened by the computational
awkwardness of classical generative phonological rules. Constraints on their order of application force
the rules to act sequentially and, in some cases, cyclically. In contrast, Rumelhart and McClelland's PDP
model of the phonology of English past tense formation maps input patterns to output patterns directly,
in one parallel step. It is, despite its weaknesses, computationally sleek.

In 1988 George Lakoff published a new theory of "cognitive phonology" in which parallel rules apply
everywhere simultaneously (Lakoff, 1988a, 1988b). Cognitive phonology is therefore free of the cycles
and rule ordering constraints that mar earlier, generative theories. Lakoff described his theory as founded
on connectionist principles, but did not specify how it should be implemented. The solution is non-
obvious, because cognitive phonology relies on a multi-level mapping representation in which insertions,
deletions, and mutations all take place at once.

This paper presents the first working implementation of Lakoff's theory. It uses a novel "many maps"
architecture to manipulate sequences of phonemes at multiple levels, and to support abstractions such
as the "vowel tier" required by some rules. I will begin by reviewing Lakoff's analysis of a Mohawk
problem posed in (Halle & Clements, 1983), and then show how the "many maps" model implements
Lakoff's solution. Finally I address the question of why one would want to have rules in a connectionist
model. I will argue that the simplicity and highly constrained nature of phonology may be a consequence
of humans' using a sequence manipulation architecture similar to the one described here.

Six Rules for Mohawk Speakers

Halle and Clements give six generative rules for deriving the Mohawk word /yi krege?/. ("I will
push it") from its underlying form /ye + Ak + hrek + ?/. (It may aid understanding to look at
Lakoff's solution first; see Figure 1.) We will consider four of these rules here:
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Epenthesis: 0 -- > e / C _ ? #

Stress: V -- > [srress] / _ Co V o

Vowel omission: V -- > 0 / V

Lntervocalic voicing: C -- > (-voice] / V _ V

The epenthesis rule inserts /e/ between a consonant (/k/ in this example) and a word-final glottal stop
/ ? /. The stress rule assigns stress to the penultimate vowel in a word. Notice that in the example / 7,
is penultimate in underlying form but antepc~nultimate at the surface, due to epenthesis. Thus. the stress
assignment rule must be applied prior to epenthesis in order to stress the correct vowel. The intervocalic
voicing rule voices a consonant if it appears between two vowels; it changes /eke/ to /ege/. But
the second / e / was inserted by epenthesis. therefore intervocalic voicing must not be applied until after
epenthesis. The vowel omission rule deletes the leftmost /e/ in the underlying form, since it precedes
another vowel. Evidence from other Mohawk words shows that vowel omission applies before stress
assignment. (If it didn't, the rules could perhaps assign stress to a vowel and then delete it. leaving no
vowel stressed.)

In the classical account these four rules are totally ordered: vowel omission precedes stress assignment,
which precedes epenthesis, which precedes intervocalic voicing. Each of these rewrite rules modifies the
"current" derivation, producing a new one. When all the rules have applied, what's left is the surface
form of the word.

M: y e + A k + b r e It + #

P: y A k r e k ?#

F: y D k r e g e #

Figure. 1: Lakoff's cognitive phonology derivation of the Mohawk word "I will push it."

Lakoff's analysis replaces the sequential rewrite rules with mapping constraints that all apply in parallel.
There are three levels of representation: M (morphemic), P (phonemic), and F (phonetic). Sequences
at M level are by default simply copied to P level. But M-P constraints can alter the mapping, causing
changes in the P-level representation. Intra-level constraints may also affect the representation at P level.
The combined effect of M-P and P-level constraints can be seen in the middle line of Figure 1: the first
/e/ has been deleted and the penultimate vowel has been stressed. A second mapping takes P-level
representations to F-level representations via a combination of P-F and F constraints. At F level we see
that the epenthetic /e/ has been inserted and, consequently, the /k/ has been voiced.

Lakoff's solution elegantly answers a number of phonological questions which, unfortunately, we cannot
afford to raise here. Elegance aside, though, its implementation in connectionist hardware is problem-
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atic. The major problems that arise are: how to efficiently implement insertion, deletion, and mutation
operations when several occur in parallel: how associations between corresponding segments at different
levels can be maintained, since levels may have varying numbers of elements; and how rules can ap-
ply everywhere at once in the input buffer. The "many maps" architecture provides solutions to these
problems.

How to Build a Map

As a prelude to discussing the full "many maps" implementation I will describe the workings of a single
map. Figure 2 shows the P-level map in the context of the Mohawk example. The input to this map
comes from two buffers: M-level and P-deriv (P derivation). The output is the P-level representation
of the utterance. The M-level buffer, which is read-only, contains the underlying form of the utterance.
Segments are shifted into the buffer from the right, and discarded when they reach the left edge. M-level
segments are by default mapped to identical segments at P-level. However, each M-level segment has a
slot in P-deriv for describing changes that can be made to it if some rule requests. Three types of changes
are supported: mutation, deletion, and insertion. Deletion of an M-level segment means blocking its
appearance at P-level. Mutacion maps the segment to a segment with slightly different features at P-level.
Insertion causes a new segment to appear at P-level to the right of the M-level segment. (Insertion to
the left could also be supported, but was omitted to simplify the simulation.) In the figure, the M-level
/e/ is marked in P-deriv for deletion, and the /A/ is to be mutated by addinjg stress. Thus the M-level
sequence /yeAk/ appears as /yA-k/ at P-level.

The upper-diagonal matrix in the figure represents an array of connectionist mapping units. When one of
these units is active (shown by a segment appearing inside it), the segment in that input column is copied
to the corresponding output row. At the same time, any mutations to the segment that were requested in
P-deriv are made.

The units in the mapping matrix are subject to lateral inhibition. At most one unit can be on in each
row and each column. The inhibition is asymmetric, so that when choosing which row an input segment
should map to, the model prefers to fill higher rows first. In addition, when choosing which segment
should appear in a row, the model prefers to select the rightmost segment available. This ensures that the
ordering of M-level segments is preserved at P-level, and that the P-level representation always appears
right-justified in the buffer with no gaps where M-level segments are deleted, and no collisions where
new segments are inserted.

Consider first the fate of the M-level /k/. The active square in the first row of the matrix shows that this
segment is mapped to the rightmost position in the P-level buffer. Since this unit is fully active, no other
unit can come on in that row or in that column. The 1A / is mapped to the second row; simultaneously it is
stressed, as specified in the mutation part of P-deriv. The /e/ is marked for deletion in P-deriv. Deletion
is accomplished by inhibiting all the units in that column of the matrix, thereby preventing the segment
from mapping to any row of P level. Thus the /y/. which is the fourth M-level segment counting from
the right, appears as the third segment at P-level. The M-P mapping is computed in parallel (in fact.
in constant time), independent of the number of segments in the buffer or the number of insertions and
deletions to be performed.

Note that M-level segments are positioned over every other mapping column. The intervening columns
are reserved for insertions. If an insertion is specified in P-deriv, the segment to be inserted will be
mapped to the next available row, just as an M-level segment would be.
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Figure 2: The map that derives P-level representations.

How Rules Work

One of the strengths of cognitive phonology is that rides may locate their environments at one level and
their actions at another. Thus the application of an M-P rule does not affect the environments of other
M-P rules. It does, however, affect the environments of P and P-F rules.

M-P rules are implemented by connectionist units that take their inputs from the M-level buffer and have
output connections to P-deriv. After a new segment is shifted into M-level, M-P rules may cause some
P-deriv units to change state, thereby recording a change the rules wish to make in the mapping. P-deriv
units maintain their states indefinitely unless disturbed by rule units, thereby serving as a memory of
accumulated changes. Each time P-deriv is modified by some M-P rule, the mapping matix re-derives
the P-level representation from the M-level and P-deriv buffers. When the M-level buffer is shifted
left to accomodaze the next incoming segment, the contents of P-deriv are also shifted left to maintain
registration with the M level.

Pure P-level rules are trickier to implement than M-P rules, because they take their inputs from' the ouput
of the mapper. For example, suppose a purely P-level rule wanted to devoice the /y/ in Figure 2. This
segment appears at position three at P level, but it is in position four at M level due to the deletion of a
preceding segment. In order for P-level rules to record their changes in the correct P-deriv segment, they
must invert the M-P mapping to align their changes with the M-level segments. The circuitry for this
is straightforward. The state of the mapping matrix used to produce the current P-level representation
provides the necessary information to invert the map.
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Since P rules apply to their own outputs, they can feed each other, and there is even a possibility of long
rule chains. Here is a simple example. In this implementation of Lakoff's Mohawk solution. epenthesis
and intervocalic voicing are both implemented as F-level rules. Even though the.rules are unordered.
the former feeds the latter, so they will have to fire sequentially. The existence of rule chains appears
to prevent the sort of parallel processing that cognitive phonology strives for. However, chunking can
be used to automatically collapse a chain of intra-level rules into one complex rule, and thus regain the
parallelism. This has been demonstrated for abstract phonological rules in (Touretzky, 1989).

Rules cannot be tied to fixed buffer positions because of feeding relationships. Suppose the intervocalic
voicing rule were aligned with the right edge of the buffer, i.e., it looked at the rightmost three segments.
When it saw /eke/ it would produce /ege/. But if the buffer initially holds /ek?/, epenthesis will
produce /eke?/, and so the first appearance of the /eke/ fragment will not be aligned with the right
edge of the buffer. It will be "downstream" of its standard position.

To make rules position-independent, we hypothesize that all rules are independently motivated and hence
can be learned in standard (right-aligned) position by a primary rule module. Secondary rule modules
are introduced at successive positions downstream. Their input and output connections are forced by
link equality constraints to mimic the behavior of the primary module. All the rule modules operate in
parallel, and their requests for changes are combined and recorded in P-deriv. In this way we achieve
position-independence without having to supply examples of every rule firing in every position.

The "Many Maps" Architecture

At a minimum, cognitive phonology requires two maps: one for P-level representations and one for F-
level. The F-level map is similar to the P-level discussed above, except it takes input from three buffers:
M-level. P-deriv, and F-deriv. F-level representations are derived directly from M-level by merging
the P-deriv and F-deriv changes at the input to the F mapping matrix. In the case of conflict, F-deriv
changes are given priority. See Figure 3. This approach allows the model's multiple maps to operate
independently instead of increasing the latency with each new level of representation. (This idea is due
to Gillette Elvgren.)

Two types of rules influence the contents of F level. P-F rules have their environments at P and their
actions at F their actions are recorded in F-deriv by first inverting the mapping specified by the P matrix to
align them properly with M-level segments. (The M-level segments and P-deriv and F-deriv changes are
all kept in strict registration.) Since F-level rules have their environment at F, their actions are recorded
in F-deriv by inverting the mapping specified by the F matrix. Figure 4 shows the relationships between
the various rule types.

In Mohawk, the stress rule is most easily implemented by placing its environment at yet another level:
a P-level vowel tier containing only vowels and word boundary markers. This allows the stress rule to
look for the pattern VV# in the vowel tier and stress the penultimate vowel. (This solution was suggested
by Deirdre Wheeler. Other evidence for an independent vowel tier is cited in (Goldsmith, 1989).) The
map that extracts the P vowel tier takes inputs from the same M-level and P-deriv buffers as the regular
P-level map, but only vowels appear in its output; consonants are left unmapped. The P vowel tier map
operates completely in parallel with the regular P-level map.

We have successfully applied the "many maps" architecture to additional examples Lakoff chose from
Slovak, Gidabal, and Lardil. Other languages will require other specialized maps. We expect, though,
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P~mp P vowel

mapr Map F VAp

Figure 3: Inputs and outputs of the P-level, F-level, and P-vowel-tier maps. All maps operate indepen-
dently, and in parallel.

that these can all be built from similar hardware. Perhaps language learners are born with a collection of
such maps at their disposal, which are then trained to extract whatever features are salient in the linguistic
environment.

Discussion

Phonology continues to be a rich and promising domain for connectionist investigations of language. It is
simpler and less plagued by the special cases and exceptions that complicate syntax and morphology. so
there is a better chance of finding a complete solution. Another advantage of phonology is its quasi-linear
structure, which facilitates experimentation with parallel distributed processing techniques. The PDP
approach isn't currently as well suited to manipulating hierarchical structures such as syntactic trees.1

The present model is not without limitations. It deals only with segmental phonology; no attempt is
made to include morphology. (In contrast, the Rumelhart and McClelland verb learning model combines
morphological and phonological processing in a single layer of weights.) Also, currently the model does
not represent syllable structure. Certain types of phonological rules therefore cannot be expressed. This
is an area where further work is in order.

The mapping architecture does not permit more than one segment to be inserted between segments
adjacent at the previous level. Morphology sometimes requires multi-segment insertions, but it appears
that phonology does not. If this observation holds true, it is a significant constraint on phonological
machinery. The model provides an achitectural explanation for it, unlike more abstract phonological
models which ignore implementation issues. Finally, the mapping matrix does not support metathesis
(switching of segments) as a primitive operation. Considering the controversial and still unresolved status
of metathesis in linguistic theory, we are in no rush to add it.

'Howeva, Toureirky (1986), Hinton (1988), and Pollack (1988) offer some hope for handling hierarchical structures.
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PFLvel P rle Stress P Vowel

F rulesRule 
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Figure 4: The different types of cognitive phonology rules that relate representations at various levels.

The "many maps" model might be improved by switching to an autosegmental representation with separate

phonemic, skeletal, and tonal tiers, as in (Goldsmith, 1989). In fact, the'ieriginal inspiration for the
mapping matrix came from wondering how inter-tier association lines in autosegmentil phonology could
be represented in a connectionist network. A mapping matrix representation seems particularly appropriate

for inter-tier rules, such as the tone-shift rules Goldsmith describes in various Bantu languages.

On the Reality of Rules

Why should human phonology be so regular and tightly constrained? It is amazing that this level of
language can be described by classical generative rules which affect only a single segment each. This

mode of description is effective, but it remains computationally inelegant. On the other hand, as Pinker

and Prince point out, a connectionist architecture that directly maps input sequences to output sequences

can perform outlandish transformations never seen in human language, such as reversing all the phonemes
of a word.

There appear to be more modest sorts of transforms that are absent from the human repertoire. For

example, no language methathesizes non-adjacent segments. Consonants are never changed to vowels,
and vice versa. And harmony and assimilation phenomena always spread features from one edge of a
cluster to the other, never from the interior outward. To be successful, a connectionist theory of phonology

should motivate these constraints by providing computational explanations for them.

We can begin to account for constraints on phonology by adopting a universal, genetically-specified

sequence manipulation machine that, like the "many maps" model, operates in parallel but can perform
only a limited set of transformations. The function of linguistic rules is to operate this machine - to
"'press the right buttons at the right times." A speaker's linguistic knowledge does not directly modify

sound sequences as in the Rumelhart and McClelland model; it modifies sequences only indirectly, by
controlling this built-in machinery.
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An input representation plus a discrete set of symbol manipulation primitives defines a rule system. If such
a system underlies human phonology, then even if speakers do not have symbolic rule representations in
their heads, they truly do use rules, as opposed to merely saying their behavior can be described by rules.
Classical phonology concerns itself with the regularities of this rule system. Connectionist phonology
attempts to ground the system in the design of the sequence manipulation machine, for it is from there
that the rule system emerges.
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